Технологии распознавания лиц и их применение в современном мире
Сегодня на рынке представлены сразу несколько типов подобных систем и выполняют они разные по уровню сложности задачи: от дистанционного распознавания в толпе до учета рабочего времени в офисе. Решения для распознавания лиц доступны заказчикам на разных платформах – это серверная архитектура, мобильные и встраиваемые решения и облачные сервисы.
Современные системы работают на нейросетевых алгоритмах глубокого обучения, поэтому точность распознавания максимальная даже для изображений низкого качества, они устойчивы к поворотам головы и обладают другими преимуществами.
Пример 1. Общественная безопасность
Обеспечение безопасности – это своего рода отправная точка, с которой началось внедрение систем биометрической идентификации. Системы дистанционного распознавания лиц применяются для обеспечения безопасности объектов массового нахождения людей.
Самая сложная задача – идентификация человека в толпе.
Так называемое некооперативное распознавание, когда человек не взаимодействует с системой, не смотрит в объектив камеры, отворачивается или пытается скрыть лицо. Например, на транспортно-пересадочных узлах, метро, крупных международных мероприятиях.
RB рекомендует лучших поставщиков цифровых решений для вашего бизнеса — по ссылке
Кейсы
Одним из самых значимых проектов 2017 для нашей компании стала крупнейшая международная выставка EXPO-2017, проходившая в Казахстане этим летом. В системе дистанционного биометрического распознавания лиц применялись специализированные камеры.
Выделение лиц в кадре происходит в самой камере и на сервер передается только изображение лица, это разгружает канал и существенно снижает затраты на сетевую инфраструктуру. Камеры контролировали четыре входные группы, в разных частях комплекса. Архитектура системы была разработана таким образом, что входные группы работали по отдельности или все вместе, при этом корректная работа системы обеспечивалась всего 4 серверами и 48 камерами.
С помощью видеоаналитики в режиме онлайн на крупных территориально-распределенных объектах ищут подозреваемых, пропавших людей, расследуют происшествия и инциденты, ведут анализ пассажиропотоков.
В некоторых аэропортах до конца 2017 года биометрия начнет применяться и для регистрации пассажиров на рейс. По данным портала Tadviser, системы «умных гейтов» в аэропортах планируют также внедрить 12 европейских стран (Испания, Франция, Нидерланды, Германия, Финляндия, Швеция, Эстония, Венгрия, Греция, Италия, Румыния).
А следующим шагом должно стать внедрение систем распознавания лиц для прохождения пограничного и миграционного контроля. При государственной поддержке внедрение идентификации по лицу может стать такой же обыденностью, как рамки металлодетекторов в перспективе ближайших трех-пяти лет.
Пример 2. Знать своего покупателя в лицо
Бизнес тоже делает ставку на биометрическую идентификацию по лицу. В первую очередь, это розничная торговля.
Системы распознают пол и возраст покупателей, частоту и время посещения торговых точек, аккумулируют статистику по каждому отдельному магазину сети.
После этого для отдела маркетинга в автоматическом режиме выводятся подробные отчеты как в целом по сети, так и с разбивкой по торговым точкам. На основе этих отчетов удобно составлять «портрет клиента», планировать эффективные маркетинговые кампании.
К сожалению, мы не можем разглашать заказчиков. В их числе крупнейшие ритейлеры и DIY (Do It Youself) сети, в ассортименте которых присутствует дорогой инструмент и комплектующие.
Как это работает
Многие опасаются утечек конфиденциальной информации, но мы особо подчеркиваем, что никакие личные данные распознанных людей не хранятся в архивах. Более того, хранится даже не изображение, а его биометрический шаблон, по которому изображение не восстановить.
При повторных визитах «подтягивается» биометрический шаблон лица, поэтому система точно знает, кто и сколько раз был в магазине. За сохранность личных данных можно быть спокойным.
Для небольших магазинов, автосалонов, аптек механизм сбора маркетинговой аналитики реализован в облачном сервисе распознавания. Для предприятий малого и среднего бизнеса такой вариант является более предпочтительным, поскольку не требует затрат на серверное оборудование, найм дополнительного персонала, обновление софта и так далее Это, во-первых, удобный инструмент для оценки эффективности торговых точек, а во-вторых, отличный помощник для выявления воров. То есть одна система выполняет сразу несколько функций.
Пример 3. Системы контроля и управления доступом
Помимо вышеперечисленных функций, систему распознавания лиц удобно применять как альтернативу Proximity-картам в системах контроля и управления доступом (СКУД).
Они имеют ряд преимуществ: обеспечивают высокую достоверность распознавания, их невозможно обмануть, скопировать или украсть идентификатор, их легко интегрировать с существующим охранным оборудованием. Можно даже использовать уже имеющиеся камеры наблюдения. Системы биометрической идентификации лиц работают дистанционно и очень быстро с фиксированием событий в архиве.
На базе биометрической СКУД удобно вести учет рабочего времени сотрудников, особенно в крупных офисных центрах.
Кейс
Мы внедрили такую систему на крупном индийском предприятии, которое специализируется в сфере логистики в прошлом году. Число постоянных сотрудников – более 600 человек. При этом компания работает в круглосуточном режиме и практикует «плавающий» трудовой график. С помощью нашей системы дистанционной биометрической идентификации заказчик получил полный и достоверный учет рабочего времени сотрудников, инструмент превентивной безопасности объекта и СКУД.
Пример 4. Пропуск болельщика на стадион
В момент покупки билета в кассах лицо каждого покупателя автоматически фотографируется и подгружается в систему. Так формируется база посетителей матча. Если покупка была через интернет или мобильное приложение, то авторизация возможна удаленно с помощью «селфи». В дальнейшем, когда человек придет на стадион, система его распознает без всяких паспортов.
Идентификация посетителей спортивных соревнований стала обязательной согласно Федеральному закону № 284-ФЗ «О внесении изменений в статью 20 Федерального закона «О физической культуре и спорте в Российской Федерации» и статьи 32.14 Кодекса Российской Федерации об административных правонарушениях.
На стадион пройдет именно тот, кто купил билет, передать билет другому лицу или пройти по поддельному билету невозможно. Дистанционное распознавание лиц на стадионах работает по такому же принципу, как на крупных территориально-распределенных транспортных объектах: если человек внесен в списки лиц, которым доступ на стадион запрещен, система его не пропустит.
Кейс
В марте 2016 года в рамках совместного проекта Вокорда и Ханты-Мансийского филиала ПАО «Ростелеком» система дистанционного распознавания лиц применялась для обеспечения безопасности Кубка мира по биатлону, проходившего в Ханты-Мансийске. С 2015 года такая же система успешно работает в многофункциональном спортивном комплексе «Арена Омск». Он входит в шестерку самых больших спортивных сооружений России, является крупнейшим спортивно-развлекательным объектом Сибири и базой хоккейного клуба «Авангард».
Пример 5. Интернет-банкинг и банкоматы
Еще одной нишей, в которой обосновалось распознавание лиц, является банковская сфера. Здесь внедрение новых технологий проходит интенсивно, поскольку финансовый сектор больше других заинтересован в достоверности и сохранности персонифицированной информации.
Сегодня биометрия постепенно начинает, если не вытеснять привычные и устоявшиеся «бумажные» документы, то идти с ними вровень. При этом существенно повышается степень защиты при проведении платежей: для подтверждения транзакции достаточно посмотреть в камеру своего смартфона. При этом сами биометрические данные никуда не передаются, соответственно, перехватить их невозможно.
Внедрение технологий биометрической идентификации напрямую связано с массовым использованием электронных сервисов и устройств, развитием интернет-торговли и распространением пластиковых карт взамен наличных денег.
С появлением высокопроизводительных графических процессоров (GPU) и сверхкомпактных аппаратных платформ на их базе – таким как NVIDIA Jetson – распознавание лиц начало внедряться в банкоматы. Теперь снять наличные или провести операции по счету может только владелец карты, например, через банкоматы Тинькофф-банка. А PIN-код скоро может уйти на пенсию.
Материалы по теме:
Как работает распознавание лиц? Разбор
Среднестатистический человек может идентифицировать знакомое лицо в толпе с точностью 97,53%. Вы скажете, это немало и будете правы. Но это ничто по сравнению с современными алгоритмами, которые добились точности 99,8% еще в 2014 году. А в последние несколько лет они достигли практически совершенства! Современный алгоритм, использующийся в камерах видеонаблюдения в Москве способен обрабатывать 1 миллиард изображений менее чем за полсекунды с точностью близкой к 100%.
Этот алгоритм насколько крут, что уже в этом году в Московском Метро планируют ввести систему прохода по лицу — FacePay. При этом нам обещают, что система будет работать даже если человек в медицинской маске.
Как вы понимаете, жизнь уже не будет прежней. Поэтому давайте разберемся:
- Как работают алгоритмы распознавания лиц?
- Страшны ли эти алгоритмы на самом деле и где их применяют во благо?
- А также поговорим какого будущего нам ждать.
Причины
- Появились действительно мощные компьютеры, способные справиться с задачей. За это спасибо закону Мура.
- Появились базы данных с нашими с вами фотографиями. За что спасибо социальным сетям.
- Ну и конечно, произошел прорыв в области нейросетей.
Этап 1. Обнаружение
В первую очередь, для того, чтобы лицо распознать, надо его сначала обнаружить. Задача на самом деле не тривиальная. Для этого мы бы могли использовать натренированные нейросети, но это слишком долго, дорого и ресурсоемко. Поэтому для обнаружения лица используется очень простой метод Виолы — Джонса, разработанный еще в 2001 году.
Как эта штука работает?
Этот алгоритм просто сканирует изображение при помощи вот таких прямоугольников, они называются примитивами Хаара:
И еще вот таких прямоугольников:
Задача этих объектов — находить более светлые и темные области на изображении, характерных конкретно для человеческих лиц.
Например, если усреднить значения яркости область глаз будет темнее щек или лба, а переносица будет светлее бровей.
В общем таких характерных признаков много и естественно не только у человеческих лиц могут быть подобные паттерны. Поэтому алгоритм работает в несколько этапов:
Сначала находится первый признак, система понимает: «В этой области может быть лицо». Тогда она начинает там же искать второй признак, а потом третий. И если в одной области найдено 3 признака, уже можно уверенно сказать — да, это лицо! После чего система получает область изображения, в котором есть только лицо.
Этап 2. Антропометрические точки
Получив область для анализа, дальше в дело вступает главный секрет каждой системы распознавания — биометрический алгоритм.
Он расставляет на лице антропометрические точки, по которым впоследствии и будут вычисляться индивидуальные характеристики человека: разрез глаз, форма носа, подбородка, расстояние между ними и прочее. Таких признаков может быть много, вплоть до нескольких тысяч. Но в целом, таких точек должно быть как минимум 68.
Этап 3. Исправление искажений
А дальше начинается настоящая магия. В идеале нам нужно лицо, которое смотрит анфас, то есть прямо в камеру. Но такая удача бывает редко, особенно если речь идет о распознавании человека в толпе.
Поэтому система производит дополнительное преобразование изображения: устранятся поворот и наклон головы. А также проводится 3D-реконструкция лица из 2D-изображения. Таким образом, даже если человек на изображении смотрел вбок, мы всё равно можем получить четкий фронтальный снимок, что существенно повышает качество распознавания.
Этап 4. Вектор лица
Ну а дальше происходит самое главное. В бой вступает нейросеть, которая присваивает каждому лицу вектор признаков. Что это такое?
По сути, это просто какое-то число, которое складывается из суммы характеристик лица: расстояний между опорными точками, текстуры определенных областей на лице и прочее. Таких характеристик может быть множество. Основное правило: они должны описывать лицо независимо от посторонних факторов: макияжа, прически, возрастных изменений.
Этап 5. Идентификация
Ну а дальше остаётся сравнить полученный вектор с базой других векторов. И готово. Система вас идентифицировала.
Где и как используется?
Помимо очевидных кейсов применения, помимо обнаружения правонарушителей в общественных пространствах и оплаты билетов в метро. Где и как могут применяться эти технологии?
Во-первых, системы могут быть настроены не на идентификацию а на анализ поведения или настроения. В такси можно можно быстро вычислять неадекватных водителей или пассажиров. В магазинах, можно находить грустных покупателей и повышать уровень сервиса. Ритейлеры одежды или продуктовые магазины используют камеры для анализа поведения покупателя, чтобы проанализировать настроение покупателя на кассе. Или например в школах, можно искать скучающих детей и корректировать программу обучения. Так, кстати уже делают в Китае. Вот такой мир будущего, и мы уже в нём живём не зная этого.
Что будет в будущем?
Чего же нам ждать в будущем? Распознавание лиц для разблокировки iPhone, входа в Windows или во время конференций — это прекрасная, удобная технология, упрощающая жизнь и мы уже ей пользуемся. Но вот повсеместные камеры наблюдения в городах рисуют в воображении самые мрачные картины в духе Джорджа Оруэлла.
Отсюда возникает вопрос — можно ли защитить себя от систем видеонаблюдения? Конечно, с развитием технологий развиваются и средства обхода этих технологий.
Люди придумывают макияж и украшения, которые сбивают с толку алгоритм обнаружения лиц, тот самый из 2001 года, создают инфракрасные очки, засвечивающие сенсоры камер, а также делают всякую криповую одежду и маски.
Но по большому счету такой лук скорее больше привлечет внимания, а алгоритмы подстроятся под обманки. Поэтому единственный способ защиты — это закон. Бизнес активно не внедряет системы распознавания лиц только потому, что это несет большие юридические издержки. В ЕС активно разрабатывается новый закон, который уже прозвали GDPR 2: он будет строго регулировать системы распознавания лиц и прочие системы искусственного интеллекта, вызывающие законные опасения.
В России с этим пока что не так хорошо. Тем не менее отечественные компании, которые присутствуют на международном рынке также будут вынуждены соблюдать новые правила игры, как произошло с первым GDPR.
То есть, как вы поняли, есть светлая сторона технологии, которая упрощает нам жизнь и темная, что приближает нас к миру большого брата.
- Блог компании Droider.Ru
- Поисковые технологии
- Алгоритмы
- Софт
- Фототехника
Использование биометрических технологий в современном мире
Биометрические технологии – это новый этап в развитии систем безопасности, которые используются во всем мире. Эти технологии позволяют идентифицировать человека по его уникальным физическим и поведенческим характеристикам, таким как отпечатки пальцев, голос, лицо, сетчатка глаза, а также распознавание походки или письма. Использование биометрических технологий позволяет создавать более безопасные и удобные способы аутентификации личности.
Одно из самых распространенных применений биометрии – это использование отпечатков пальцев для аутентификации личности. Эта технология широко применяется на границах многих стран, в банковской сфере, а также в компьютерных системах и мобильных устройствах. Благодаря этому, люди могут защитить свои личные данные и средства путем идентификации по отпечатку пальца. Биометрическая аутентификация по отпечаткам пальцев является одной из наиболее распространенных и удобных технологий идентификации в современном мире. Она обеспечивает высокую точность, быстроту и удобство использования. В последнее время, эта технология также используется для оплаты товаров и услуг, что позволяет ускорить процесс покупки и сделать его более удобным.
Технология распознавания лица также получила широкое распространение. Она используется в системах видеонаблюдения, на границах и в аэропортах, в банковской сфере и в медицинских учреждениях. Эта технология позволяет более точно и быстро идентифицировать человека. Системы распознавания лиц широко применяются в системах безопасности, например, для идентификации преступников на улицах или для доступа к конфиденциальной информации на компьютерах. Технология распознавания лиц позволяет быстро и точно идентифицировать человека, что делает ее незаменимой в современном мире. В настоящее время, технологии распознавания лиц используются для улучшения качества обслуживания клиентов в ресторанах и отелях, а также в системах безопасности дома и офиса.
Системы распознавания голоса также стали очень популярными в последние годы. Они используются в банковской сфере, в системах видеонаблюдения и в телефонных системах. Эта технология обеспечивает более высокий уровень безопасности и удобства для пользователей. Технология распознавания голоса используется в системах безопасности, а также в системах управления доступом. Она позволяет идентифицировать пользователя по голосу, что обеспечивает высокий уровень безопасности и исключает возможность мошенничества. Более того, данная технология может использоваться для улучшения обслуживания клиентов в call-центрах, а также для создания более удобных систем управления домашними устройствами.
В заключение, биометрические технологии – это важный инструмент для обеспечения безопасности и удобства в нашей жизни. Они помогают защитить наши личные данные и средства, и позволяют быстро и точно идентифицировать человека. Таким образом, использование биометрических технологий является необходимым в современном мире. Биометрические технологии продолжают развиваться и улучшаться, что позволяет нам создавать еще более безопасные и удобные способы аутентификации личности. Современные технологии позволяют использовать биометрическую аутентификацию в различных областях жизни, от банковской сферы и систем безопасности до управления домашними устройствами и оплаты товаров и услуг.
- * — Социальные сети Instagram и Facebook принадлежат компании Meta и запрещены в РФ. Компания Meta признана экстремистской организацией на территории Российской Федерации.
При подготовке материала использовались источники:
https://rb.ru/opinion/lico-kak-id/
https://habr.com/ru/companies/droider/articles/568764/
https://www.ixbt.com/live/offtopic/ispolzovanie-biometricheskih-tehnologiy-v-sovremennom-mire.html