Врачам и пациентам: как искусственный интеллект помогает в медицине
За первый квартал 2022 года частные инвестиционные компании вложили миллиарды долларов в здравоохранение. Треть из них была направлена на одно из самых перспективных направлений в медицине — интеграцию и развитие ИИ.
3673 просмотров
О том, насколько перспективна эта технология, чем она может помочь пациентам и врачам, и почему некоторые люди опасаются ИИ в медицине, рассказывает Сергей Воинов, директор по акселерации по направлению «Цифровая медицина» Кластера биологических и медицинских технологий Фонда «Сколково».
Уже сейчас рынок ИИ в медицине оценивается в $8,2 млрд. Согласно прогнозам аналитиков, к 2027 году объем рынка может вырасти до $25,1 млрд.
Успешные проекты с ИИ
Главные задачи ИИ — улучшить эффективность системы здравоохранения и снизить нагрузку и объем рутинной работы врачей, позволив им сконцентрироваться на постановке точных диагнозов. Именно поэтому рынок технологий и, в частности, ИИ так активно развивается в сегменте медицины.
Первым направлением, где искусственный интеллект получил широкое распространение, стала радиология – в части компьютерных и магнитно-резонансных томограмм, рентгена и флюорографии. Алгоритмы ИИ помогают выявить патологию на ранней стадии, обозначить потенциальные проблемы, на которые стоит обратить внимание, а также собрать воедино данные с анализов. Такой способ диагностики уже доказал свою эффективность, поскольку врач не всегда может заметить мельчайшие изменения — они будут видны только при систематизации огромного массива данных. Кроме того, ИИ позволяет эффективно контролировать ход заболеваний, например, онкологических, или выявлять его первые симптомы и признаки, свидетельствующие о скором развитии болезни.
Дебютной разработкой в этой области стала система Webiomed (компания «К-Скай» — резидент «Сколково»). Как медицинское изделие платформу прогнозной аналитики и управления рисками в здравоохранении зарегистрировали 3 апреля 2020 года. Это первая система ИИ в России, которая способна обработать большой объем информации о пациенте, выявить на основе данных подозрения на заболевания и спрогнозировать возможное ухудшение здоровья. При этом ИИ изучает не только медицинские показатели, но и социальные данные. Платформа формирует цифровой паспорт пациента. Можно сказать, что система заменяет целый консилиум врачей, что позволяет работать быстрее и точнее.
В России этой сфере уделяется особое внимание. Несколько проектов уже достигли весомых результатов в использовании ИИ в радиологии. В их число вошли Botkin.AI, Care Mentor, «Третье мнение» и «Цельс» – все они являются резидентами «Сколково». Качество работы подтверждает статистика. Например, заммэра Москвы по вопросам социального развития Анастасия Ракова сообщила, что за два года сервисы ИИ обработали более 6 млн лучевых снимков. По ее словам, технологии помогли быстрее описать снимки и заметили мельчайшие отклонения. ИИ хорошо показал себя в медицине, поэтому ученые уже пишут алгоритм, по которому можно будет обнаружить ранние проявления болезни Альцгеймера по результатам МРТ.
Еще одним направлением, где применяется искусственный интеллект, стала область семантического анализа. ИИ анализирует и систематизирует данные, содержащиеся в электронной медицинской карте пациента. Ее заполняют сразу несколько врачей: кардиолог, невролог, терапевт и другие. Алгоритм собирает анамнезы воедино, и так специалист может обнаружить определенные паттерны. Метод, при котором медкарта заполнена разными специалистами, а данные собраны воедино, позволяет оптимизировать постановку точного диагноза.
Настоящей технологией будущего можно считать роботов-хирургов — это решение на стыке роботизации и ИИ. Успешный проект в этом направлении представил резидент «Сколково» — компания «Экзоскелет». Специалисты разрабатывают роботы-экзоскелеты, которые помогают людям после тяжелых травм заново учиться ходить. Однако говорить об использовании роботов-хирургов пока рано. Причина кроется в большом количестве алгоритмических частей, с помощью которых можно создать конечный продукт. При этом они могут быть не связаны напрямую с медицинскими показателями. К примеру, автопилот распознает препятствия на дороге, но не имеет доступа к управлению машиной.
Польза для каждого
Применение ИИ выгодно как для врача, так и для пациента – то есть, для всей системы здравоохранения в целом. Качество диагностики выходит на совершенно другой уровень. Однако с развитием технологий появляются и опасения у людей — некоторые пациенты сейчас склонны не доверять искусственному интеллекту. Но дело в том, что за весь процесс полная ответственность все также остается на враче – именно он выносит окончательное решение о диагнозе и лечении. ИИ лишь помогает ему собрать все нужные данные воедино и указывает на сигналы, которые могут свидетельствовать об отклонении. Сама технология рассматривается только в качестве СППВР-сервиса — системы поддержки принятия врачебных решений. ИИ анализирует информацию о пациенте, и только врач определяет, что и как делать дальше.
Искусственный интеллект не менее полезен для Министерства здравоохранения, например, при массовом медицинском осмотре — скрининге. Для примера возьмем норматив — двойной повторный пересмотр маммографических исследований на рак молочной железы. В этом случае мы снимаем с врачей обязанность проводить первичный или второй просмотр карты пациента и поручаем это искусственному интеллекту. Благодаря алгоритму, большой системный процесс автоматизируется, у врачей появляется свободное время – его можно уделить более тщательной диагностике, которую пока нельзя доверить технике.
Этика применения ИИ
Расширение участия ИИ в медицине поставило перед специалистами ряд этических вопросов, связанных, в том числе, с его использованием без контроля врача. Речь идет о вероятности самостоятельного применения инструментов пациентом.
Между человеком и машиной всегда должно быть промежуточное звено — медицинский специалист. Чтобы пациенты не использовали технологии себе во вред и не занимались самолечением, существует Всероссийский свод этических правил применения искусственного интеллекта в медицине.
Что касается повсеместного использования «умных» устройств, которыми пользуется каждый второй, то отнести их к технологиям ИИ нельзя. Гаджеты не анализируют информацию и не могут поставить предположительный диагноз. Устройства могут считывать пульс, сердцебиение, уровень кислорода, то есть предоставлять данные об одном или нескольких параметрах, но не могут конкретно указать, в чем проблема. Крупные бренды, выпускающие «умные» устройства, всегда советуют обращаться к врачу, если показатели изменились в худшую сторону. Понятно, что нельзя просто прийти к врачу и показать часы, которые, например, сообщили о плохой динамике сердцебиения. Пациенту в любом случае назначат комплексное обследование, прежде чем делать выводы о возможной патологии.
Контроль на законодательном уровне
Фонд «Сколково» принял участие в разработке норм регулирования применения ИИ в медицине и оказал экспертную поддержку — софт, необходимый для врачебной практики, может попасть в систему здравоохранения только после обязательной регистрации. Это означает, что перед этим он пройдет ряд проверок и испытаний. В рамках системы контроля также установлены определенные классы риска ПО, присвоение которых зависит от данных и решений, принимающихся ИИ. Самый низкий класс — это учетные медицинские системы, которые никак не влияют на пациента. Максимально высокий класс — это ПО, от которого зависит жизнь человека. Например, есть софт, который отправляет сигналы на имплантированный кардиостимулятор. Зарегистрировать такое ПО можно по истечению нескольких лет клинических исследований.
Впервые регистрация продукта на основе ИИ произошла летом 2020 года. Уже в 2021 года пять наших резидентов получили регистрационные удостоверения Росздравнадзора. Этот момент можно считать отправной точкой, когда регистрация софта вошла в практику.
Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Технологии упрощают жизнь как врачу, так и пациенту, выполняя задачи быстрее и точнее, снижая количество ошибок и предоставляя удобную клиническую аналитику.
Искусственный интеллект в медицине: применение и перспективы
Искусственный интеллект уже водит машины, отвечает на звонки, пишет тексты и рисует картины. А как насчет медицины? Отвечаем: в этой области он тоже набирает обороты и постепенно превращается в важного помощника медицинского персонала. Внедрение систем на базе ИИ – один из ключевых трендов современного здравоохранения. В этой статье мы расскажем, как в этом направлении развивается медтех рынок и как использовать ИИ в медицине и здравоохранении.
14 583 просмотров
Медтех и искусственный интеллект
Медтех, или медицинские технологии, – это применение гаджетов и сервисов в здравоохранении. Сюда можно отнести приложения, информационные сети и другие разработки, которые могут использовать пациенты и врачи. Вот задачи, в которых могут быть полезны медицинские технологии:
- анализ медицинских изображений (УЗИ, КТ, МРТ, результаты анализов);
- поддержка принятия врачебных решений;
- подбор индивидуального лечения;
- приложения для онлайн-консультаций;
- удаленный мониторинг и помощь пациентам;
- разработка лекарственных препаратов;
- протезирование с помощью интеллектуальных систем.
По прогнозам Deloitte, к 2022 году объем расходов на мировом рынке здравоохранения достигнет $10,059 трлн. Частный пример современных медицинских технологий – это искусственный интеллект, который сейчас активно внедряется в здравоохранение. Например, рынок ИИ-приложений в области медицины вырос в десять раз с 2014 года:
Источник: PwC
Применение ИИ в медицине
Данные о пациентах
Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза. Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов.
Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента.
Диагностика
Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца.
Такие типы ИИ-программ могут использовать не только врачи, но и пациенты. Сервис 23andMe анализирует генетическую информацию и рассказывает пользователю о его предках. Стартап Sophia Genetics использует генетические данные для выявления предрасположенности к определенным заболеваниям. Так пациенты корректируют свой образ жизни, а врачи выбирают наиболее вероятные диагнозы.
Создание лекарств
Разработка вакцины и последующие клинические исследования – это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов. Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие.
Автоматизация процессов
Дисбаланс и дефицит медицинских кадров высшего и среднего звена был во всем мире еще до вспышки коронавируса. По данным Всемирной Организации Здравоохранения, чтобы люди во всем мире имели доступ к услугам здравоохранения к 2030 году, странам с низким уровнем дохода нужно еще 18 миллионов медицинских работников. В дальнейшем ситуация, скорее всего, не стабилизируется из-за роста населения, старения общества и изменения клинической картины заболеваний. Эти факторы только повысят спрос на высококвалифицированных медицинских работников и усложнят доступ к медицинской помощи. Поэтому инновационные технологии должны содержать в себе искусственный интеллект и базу знаний в предметной области. Так они освободят врачей от рутинных повседневных задач: внесение информации в медкарту, детальный анализ большого массива данных из истории болезней и т.д. Благодаря этому медработники сконцентрируют время и усилия на решении серьезных диагностических вопросов и выборе лечения. Современные ИИ-технологии могут помочь системе здравоохранения повысить удовлетворенность пациентов и медицинского персонала, снизить стоимость медицинских услуг и улучшить качество медицинской помощи.
Онлайн-консультации
О популярности телемедицины мы уже говорили в статье про медтех тренды 2021. Удаленные консультации расширяют доступ к качественной медицинской помощи, особенно в малонаселенных пунктах, где в ней нуждаются больше всего. Кроме того, онлайн-консультации предоставляет возможность снизить затраты на здравоохранение и получить второе мнение по результатам исследований, чтобы уточнить диагноз и план лечения. ИИ делает телемедицину значительно удобнее. Он применяется для удаленной диагностики, сбора медицинских показателей и работы с информацией о пациентах.
Например, в нашем приложении для докторов Primu.Online планируется внедрить ИИ для анализа симптомов и перевода записей приёмов в текстовый формат. А в Google уже разработали алгоритм, который по фотографии сетчатки глаза выявляет диабетическую ретинопатию. Так врачи могут избежать рутинных задач и сложностей диагностики, чтобы сосредоточиться на лечении.
Например, В Google разработали алгоритм, который по фотографии сетчатки глаза выявляет диабетическую ретинопатию. Так врачи могут избежать рутинных задач и сложностей диагностики, чтобы сосредоточиться на лечении.
Над телемедицинскими приложениями работают многие крупные компании, например, Сбер. Приложение СберЗдоровье использует искусственный интеллект для распознавания симптомов. Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача. Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние.
Перспективы применения ИИ
На рынок медтеха входят крупные игроки: Google, Apple, Microsoft. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников. Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности. Например, Google Health – это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т.д.
Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта. Это отличный шанс нащупать правильный подход к аудитории и занять прибыльную нишу. Кроме того, согласно исследованиям, рынок ИИ в медицине будет стремительно расти в ближайшие несколько лет:
Источник: McKinsey and Company
За искусственным интеллектом будущее, и оно наступает уже сегодня. Мы в Azoft стремимся использовать все возможности новейших технологий. Наш отдел RnD разрабатывает и использует искусственный интеллект, машинное обучение и нейронные сети для решения задач в области медицины и не только. Напишите нам на [email protected] с идеей проекта – мы будем рады внести вклад в развитие медтеха вместе с вами.
ИИ и машинное обучение в медицине
Одним из важнейших факторов, влияющих на развитие человеческого общества в ближайшие годы, станет искусственный интеллект (ИИ). В это понятие мы вкладываем все направления развития сферы, включая машинное обучение (Machine Learning, ML), генеративно-состязательные сети (Generative Adversarial Networks, GAN), градиентный бустинг (Gradient-boosted-tree models, GBM), глубокое обучение с подкреплением (Deep Reinforcement Learning, DRL) и т.д.
Бизнес, технологический сектор, а также здравоохранение — это те области, где ИИ особенно востребован. Давайте посмотрим, как инструменты AI/ML способны повлиять на качество оказания медицинских услуг.
Прим.: Cloud4Y подготовил статью из трёх частей, посвящённых связке ИИ и медицины. Первые две рассказывают о способах использования технологии, а третья посвящена проблемам, которые возникают при реализации этой идеи.
Идея использования искусственного интеллекта в медицине восходит к 1972 году, когда заработал MYCIN Стэнфордского университета. Это была программа-прототип ИИ, используемая для изучения вопроса заражения крови. Ранние исследования ИИ продолжались в основном в американских учреждениях (совместно работали MIT-Tufts, активно развивали технологию в Стэнфорде и Ратгерском университете. В 1980-х годах Стэнфордский университет продолжил свою работу в области искусственного интеллекта в рамках проекта «Медицинский экспериментальный компьютерно-искусственный интеллект в медицине» ( SUMEX-AIM).
Благодаря росту вычислительной мощности и появлению новых технологий искусственного интеллекта, работа в этом направлении стала намного более активной. Регулярно появляются новости об очередном научном открытии, сделанном с помощью нейросетей и машинного обучения. Что интересного можно рассказать о возможностях и перспективах ИИ в медицине на сегодняшний день?
ИИ в радиологии
Многочисленные данные медицинской визуализации в изобилии хранятся в небольших локальных системах. Но что, если использовать глубокое обучение, загрузив данные в облако и «скормив» их ИИ? Машины и алгоритмы могут эффективно интерпретировать данные визуализации, выявляя закономерности и аномалии.
Самый очевидный вариант использования: ассистент радиолога/рентгенолога, занимающийся выявлением и локализацией подозрительных образований на коже, повреждений, опухолей, внутренних кровоизлияний, образований на мозге и т.д. Компьютер работает быстрее и точнее, а потому способен выдать конкретные данные о заболевании спустя несколько секунд после обработки информации. Человек так не может.
Есть и другой момент. Высококвалифицированные специалисты стоят дорого, и на них колоссальный спрос. Они испытывают нешуточное давление, буквально увязая в потоках данных, которые сыплются на них со всех сторон. Если верить этой статье, такой специалист должен выдавать диагноз каждые 3-4 секунды. Машинный интеллект может повысить квалификацию обычного специалиста, помогая ему разобраться в сложных ситуациях. Тем самым уменьшая количество ложных диагнозов и спасая жизни людей.
Выявление редких или трудно диагностируемых заболеваний часто зависит от опыта врача, а также степени «запущенности» болезни. Проще говоря, пока болячка не полезет наружу, её могут и не распознать. Обучив компьютер на больших наборах данных, содержащих необработанные изображения и множество форм патологий, сопутствующих тем или иным заболеваниям, можно повысить качество постановки диагнозов и количество выявленных заболеваний. Такую идею разрабатывает стартап AIDOC.
ИИ способны повысить качество работы медучреждений, автоматизировав трудоёмкую и ответственную часть работы врачей. С помощью компьютерных алгоритмов можно также контролировать эффективность лечения и качество выполненной операции, прогнозировать скорость восстановления организма.
Хорошим примером такой технологии является проект Microsoft InnerEye. Он предлагает использовать методы ML для сегментации и идентификации опухолей с использованием 3D-рентгеновских снимков. Это может помочь в точном планировании операции, навигации и эффективном формировании контуров опухоли для планирования лучевой терапии.
Также нужно заметить, что МРТ и другие современные системы визуализации, используемые для раннего выявления рака, работают с ML. Алгоритмы помогают проводить расширенный анализ изображений. Например, выполнить сегментацию предстательной железы или совместить несколько разных снимков (например, УЗИ, КТ и МРТ) для получения более точной картины. Машинный интеллект также способен распознать онкологию во время плановых медицинских процедур и даже хирургическом вмешательстве (часто бывает, что во время операции остаётся незамеченным ещё одно злокачественное образование).
ИИ в патологии
Патологическая диагностика включает исследование среза ткани под микроскопом. Использование Deep Learning для обучения алгоритма распознавания изображений в сочетании с человеческим опытом обеспечит более точную диагностику. Анализ цифровых снимков на уровне пикселей может помочь в обнаружении патологических изменений, которые человеческий глаз легко может пропустить. И это обеспечит более эффективную диагностику.
Такую технологию разрабатывает, к примеру, медицинская школа Гарварда. Алгоритм использует технологию распознавания речи и изображений для распознавания снимков с патологиями и обучает компьютеры различать раковые и не раковые образования. Сочетание этого алгоритма с работой человека привело к точности 99,5%.
Машинное обучение и медицинская наука
Во всевозможных медицинских учреждениях генерируются петабайты данных. Эти данные, к сожалению, обычно являются беспорядочно разбросанными и неструктурированными. Это ни в коем случае не упрёк в сторону врачей. Им приходится не столько лечить, сколько отчитываться о лечении. Однако хаос здорово мешает в планировании и глобальном наблюдении за здоровьем отдельно взятой страны или мира в целом.
Дополнительная сложность заключается в том, что в отличие от стандартных бизнес-данных, данные пациентов не слишком-то хорошо поддаются простому статистическому моделированию и аналитике. Мощная облачная платформа с поддержкой ИИ, имеющая доступ к медицинским БД, способна эффективно анализировать смешанную информацию (например, патологию крови, генетические особенности, рентгеновские снимки, историю болезни). Она же (теоретически) способна анализировать входные данные и выявлять скрытые закономерности, которых не видно из-за чересчур большого объёма медицинской информации.
Интерпретируемые модели ИИ и распределённые системы машинного обучения отлично подходят для этих задач. Они позволят не только эффективно развивать медицинскую науку, находя новые закономерности и расовые/половые/возрастные особенности людей, но формировать более точные данные о состоянии здоровья населения в конкретных регионах.
Хирургические роботы-ассистенты
Уже сейчас многие операции проводятся с помощью компьютерного зрения и манипуляторов, которыми управляет хирург. Это значимая часть развития медицинских технологий, нивелирующая фактор человеческой усталости и повышающая эффективность процедур. Роботы с ИИ способны здорово помочь обычным хирургам. Например:
- Контролировать работу врача, выполняя роль страховки на случай невнимательности;
- Улучшать видимость для хирурга, напоминать ему о последовательности действий во время процедуры;
- Создавать точные, минимально инвазивные разрезы тканей;
- Снижая уровень боли для пациента за счёт подбора оптимальной геометрии разреза и накладываемого шва.
Хорошим вариантом может стать генерация компьютером пространства виртуальной реальности для управления действиями хирурга в режиме реального времени. Также можно использовать телемедицину и удалённую хирургию для проведения относительно несложных операций.
Что ещё полезного можно почитать в блоге Cloud4Y
Подписывайтесь на наш Telegram-канал, чтобы не пропустить очередную статью. Пишем не чаще двух раз в неделю и только по делу.
При подготовке материала использовались источники:
https://vc.ru/future/465812-vracham-i-pacientam-kak-iskusstvennyy-intellekt-pomogaet-v-medicine
https://vc.ru/azoft/216336-iskusstvennyy-intellekt-v-medicine-primenenie-i-perspektivy
https://habr.com/ru/companies/cloud4y/articles/506288/